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Who am I
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https://www.stiima.cnr.it/

Research fellow (2018-present) 

Main activities:

• Autonomous/Cooperative 

manipulation and assembly of heavy 

and bulky objects

• Workspace optimization to increase 

complex task’s robustness

https://drimi.unibs.it/

Ph.D. student (2020-present)

Main activities:

• game theoretical approach to physical 

Human-Robot Interaction

• Human-Robot role arbitration

https://www.stiima.cnr.it/
https://drimi.unibs.it/


The DrapeBot project
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https://www.drapebot.eu/

The DrapeBot project aims at human-robot collaborative draping.

My main activities:

• Develop a control framework to enable human-robot co-transportation of carbon fiber

plies

Method:

• Game theoretic description of the task to take into account the interaction

Required components:

• Human cost function

• Human desired trajectory

• Arbitration policy

https://www.drapebot.eu/
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https://www.drapebot.eu/

The DrapeBot project aims at human-robot collaborative draping.

My main activities:

• Develop a control framework to enable human-robot co-transportation of carbon fiber

plies

Method:

• Game theoretic description of the task to take into account the interaction

Required components:

• Human cost function - Identification

• Human desired trajectory

• Arbitration policy

https://www.drapebot.eu/


Background: optimal control

5

Optimal control: find a control input 𝑢 for a dynamical system over time period such that 

an objective function 𝐽 is optimized

min
𝑢

𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑡)

𝑠. 𝑡 ሶ𝑥 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡
𝑥 0 = 𝑥0



Background: optimal control
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Optimal control: find a control input 𝑢 for a dynamical system over time period such that 

an objective function 𝐽 is optimized

min
𝑢

𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑡)

𝑠. 𝑡 ሶ𝑥 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡
𝑥 0 = 𝑥0

Solutions
𝑥∗ 𝑡 , 𝑢∗(𝑡)



Background: Inverse optimal 
control
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Inverse Optimal control: given observed state ҧ𝑥(𝑡) and control histories ത𝑢(𝑡), given the system 

dynamics in ሶ𝑥 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , recover the cost function 𝐽 𝑥(𝑡), 𝑢(𝑡) that produced such control 

histories.

min
𝑢

𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑡)

𝑠. 𝑡 ሶ𝑥 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡
𝑥 0 = 𝑥0

Solutions
𝑥∗ 𝑡 , 𝑢∗(𝑡)

Observations

ҧ𝑥 𝑡 , ҧ𝑢(𝑡)



WHY IOC ? 
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• Observe nature and learn how it behaves
• J. Mainprice, R. Hayne and D. Berenson, "Predicting human reaching motion in collaborative tasks using Inverse Optimal Control and iterative re-

planning," 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

• Westermann, K. et al. “Inverse optimal control with time-varying objectives: application to human jumping movement analysis.” Sci Rep 10, (2020).

• T. Maillot et al, "How pilots fly: An inverse optimal control problem approach," 52nd IEEE Conference on Decision and Control, 2013

• I. A. Faruque, F. T. Muijres, K. M. Macfarlane, A. Kehlenbeck, and J. S. Humbert, “Identification of optimal feedback control rules from

micro-quadrotor and insect flight trajectories” Biological cybernetics, 2018

• M. C. Priess, R. Conway, J. Choi, J. M. Popovich, and C. Radcliffe, “Solutions to the inverse lqr problem with application to biological systems analysis” 

IEEE Transactions on Control Systems Technology, 2015

• Teach to a robot a behavior rather than a trajectory – Learning-By-Demonstration
• Park, Taesung, and Sergey Levine. "Inverse optimal control for humanoid locomotion." Robotics science and systems workshop on inverse optimal 

control and robotic learning from demonstration. 2013.

• Finn, Chelsea, Sergey Levine, and Pieter Abbeel. "Guided cost learning: Deep inverse optimal control via policy optimization." International conference 

on machine learning. PMLR, 2016.

• Kalakrishnan, M. “Learning objective functions for autonomous motion generation”, University of Southern California, Los Angeles, CA, 2014



Linear-Quadratic case
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Linear-Quadratic formulation simplifies both Optimal and Inverse Optimal Control 

problems, and its applicability to many problems explains its spread

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

𝐽 𝑥, 𝑢 = ∫ 𝑤𝑇𝜙 𝑑𝑡

Linear system, with 𝐴 and 𝐵 state and input matrices

Quadratic cost function, with 𝜙 and 𝑤 vectors of 

features and weights

𝐽 𝑥, 𝑢 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢) 𝑑𝑡
Classical LQ definition of the cost function, with 

matrices 𝑄 and 𝑅 weighting state and control features



Linear-Quadratic case
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The Optimal Control problem is now

min
𝑢

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢) 𝑑𝑡

𝑠. 𝑡 ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑥 0 = 𝑥0

And the feedback solution is 𝑢∗ 𝑡 = −𝐾𝑥(𝑡)

With feedback gain matrix K 𝐾 = 𝑅−1 𝐵𝑇𝑃

With matrix P solution of the 

Algebraic Riccati Equation (ARE) 0 = 𝐴𝑇𝑃 + 𝑃𝐴𝑇 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄



Linear-Quadratic IOC
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The LQ Inverse Optimal Control problem can be solved exploiting the ARE, if the matrix K 

is known (Least-squares, Recursive least squares, EKF methods can be exploited)

In the LQ IOC case, the problem can be reformulated as minimization of a residual in a 

constrained Quadratic Problem form

min
𝑤

𝑟 2 =
1

2
𝑤𝑇𝐻𝑤

𝑠. 𝑡 𝐼 𝑤 ≥ 0
𝑅 > 0

In this, as an intuition matrix H contains a reformulation of the ARE*, while the constraints 

include the standard Optimal Control requirements (semi-positiveness of Q and 

positiveness of R) *please refer to the workshop article, and to J. Inga et al., “Solution sets for inverse non-
cooperative linear-quadratic differential games,” IEEE Control Systems Letters, vol. 3, no. 4, pp. 
871–876, 2019. for a full mathematical tractation



System modeling
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Having written the problem in linear state space formulation* allows to apply all the LQ 

(Inverse) Optimal Control techniques presented above

𝑀𝑖 ሷ𝑧 + 𝐶𝑖 ሶ𝑧 + 𝐾𝑖𝑧 = 𝐹 Impedance equation

State-space 

reformulation

ሶ𝑧
ሷ𝑧
=

0 𝐽𝑎
−𝑀𝑖

−1𝐾𝑖 −𝑀𝑖
−1𝐶𝑖

ሶ𝑧
ሷ𝑧
+

0
𝑀−1 𝑢

ሶ𝑥 = 𝐴 𝑥 + 𝐵 𝑢

𝑢 = 𝐹 = −𝐾𝑥

*the human control described as full-state feedback is common in literature and well approximate human behavior. 

See as example Li, Yanan, et al. "Differential game theory for versatile physical human–robot interaction." Nature Machine Intelligence 1.1 (2019): 36-43.

Full-state feedback 

human control*



Experiments
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Data are collected by:

• Three subjects perform a reaching task directly imposing a force to the robot tip to a 

set-point along one direction

• The set-point randomly changes at each record 𝑧𝑠𝑝 = [0.4,0.9]

• Three different impedance control tuning (𝑀𝑖 = 10, 𝐶𝑖 = 25,50,75 , 𝐾𝑖 = 0)

• 12 records are taken for each impedance tuning, for each subject

• A UR5 robot equipped with a Robotiq FT300 force sensor are used for the test, the 

robot provides positions records and the sensor the force records

Note 1: the human cost function matrices, as typically happens, are assumed to be nonzero only on the diagonal terms, resulting 

in 𝑄 = 𝑑𝑖𝑎𝑔([𝑞1, 𝑞2]), and 𝑅 = 𝑟. 

Note 2: the solution to the optimal control problem is the same for any 𝜆𝐽 with 𝜆 scalar. The constraint 𝑞1 = 1 is added to the QP 

problem to make results comparable.



Results - Recovered Q,R
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• 𝑞1 = 1 by constraint

• 𝑞2 ≅ 0 *

• 𝑟 low, visible in figure

Interesting:
1. The low value of r, compared with q1, means 

that a fast set-point reaching is more favorable
than saving effort.

2. Cost function varies depending on the 

system’s tuning

3. Optimal behavior → all the same

* A similar result is obtained in J. Inga, M. Eitel, M. Flad, and S. Hohmann, “Evaluating 
human behavior in manual and shared control via inverse optimization,” in 2018 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 2699–2704.



Results - risetime
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• Risetime 𝑅𝑇 (time to reach 0.95 𝑥𝑠𝑝) 

computed as 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑇

𝑥𝑠𝑝

Figure shows that the rise time is almost 

constant for a subject independently from the 

system: humans tend to keep constant the 

required time 



Results – R vs Set-Point
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As far the set-point is, as much control weight (R) increases



Results – OC model
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• To measure how well the recovered cost 

matches the actual control input the following 

index is defined ℇ𝑢 = ∫𝑡0
𝑡𝑓 𝑢(𝑡)− ෝ𝑢(𝑡)

𝑢𝑚𝑎𝑥
𝑑𝑡



Results – OC model
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Conclusions
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• Humans tend to minimize the reaching time rather than control effort

• IOC captures the essential human behavior (peak, trend) 

• Humans control varies according to the system, to the task and to the subject, hence it is not 

generalizable

• IOC can be adopted online to make its approach general



Future works
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• Robot active to provide support to the human

• Different results are expected for the LQ cost function

• Different cost functions will be implemented taking into account minimum time, jerk, energy, etc

• Analysis of human behavior in different scenarios (Cooperative, Non-Cooperative) to check the 

most suitable description
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p.franceschi@unibs.it, paolo.franceschi@cnr.stiima.it

Thank you for your attention

mailto:p.franceschi@unibs.it
mailto:paolo.franceschi@cnr.stiima.it
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